
1

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Secure Your Web,
Mobile Applications
and APIs using the
Kong Gateway
Krishnaraj Subburayalu
Senior Technical Account Manager
Kong Inc.

Technical Guide

2

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Content

API Strategy: Risk and Rewards

Authentication and Authorization using an API Gateway	

Kong Authentication and Authorization Capabilities		

Secure Applications and APIs with Kong Gateway and an IdP	

	 Login Workflow

	 API Access flow

	 Keycloak Implementation Details

	 Kong Implementation Details			

Conclusion

3

4

6

6

7

8

9

9

15

3

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

API Strategy: Risk and Rewards

Today, Application Programming Interfaces (APIs) and microservices
are the engines powering the digital economy. The benefits of APIs
and microservices in such a rapidly evolving world are manifold; at
a top level, they help accelerate time-to-market, enhance customer
experience and increase the speed of innovation.

However, the complexity and highly distributed nature of these
modern web and mobile applications introduce new challenges,
new attack vectors and require a new approach to security. Without
proper security, enterprises may accidentally expose sensitive data
or open themselves up to cyberattacks, compliance violations and
other security issues. Enterprises need to have a comprehensive
API management (APIM) strategy for securing their APIs and
microservices. APIM is a broad category that includes an API
gateway and supporting capabilities such as a developer portal,
security, observability/analytics, API lifecycle management and more.

4

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Authentication and Authorization using
an API Gateway

An API gateway decouples the upstream microservices from your
applications, providing centralized traffic routing, integration and
security policy for all API traffic. While this simplifies access for client
applications, it also provides a centralized platform for implementing
and enforcing policies, including security policies consistently to all
your APIs.

The API gateway can be configured to enable security policies such
as authentication and authorization. Authentication is the verification
that somebody is who they say they are. Beyond the basic login steps
of entering a username and password, other means of facilitating
authentication include OAuth2.0, OpenID Connect, mutual TLS and
token-based authentication. Authorization is the determination of
what resources somebody is allowed to access. Open Policy Agent
(OPA), an open-source authorization engine, has become increasingly
popular to apply fine-grained authorization to APIs and microservices.

A best practice for authenticating API consumers is token-based
authentication and authorization, where users or applications get
tokens from an Identity Provider (IdP) and send tokens to the service/
API. The service/API validates the token with the IdP and allows
access. These tokens are usually time-bound and expire within a
time limit and are revocable. This identity tokens exchange provides
greater security of not sending passwords/credentials often over the
network, reducing the risk of identity theft. The token-based approach
to authentication allows separating the issuing of tokens from their
validation, thus facilitating the centralization of identity management.

With the benefit of centralized identity management, all applications
(web, mobile, legacy) and upstream APIs use the same IdP to manage
API consumer identities. Adopting a centralized identity management
strategy enables architects to implement consistent security best
practices and standards across the organization as they can easily
define and manage access controls and the consumers across all the
systems, including their applications and API gateways. This strategy
also helps developers to focus their efforts on application design and
feature development, not on writing redundant code to integrate the
IdP with each application.

https://oauth.net/2/
https://openid.net/connect/
https://en.wikipedia.org/wiki/Mutual_authentication#mTLS
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/

5

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Like centralized identity management, validation of a token and its
authentication management can be centralized or delegated to a
modern API gateway like Kong. A legacy gateway approach would
use the IdP for authentication and gateway to define authorization
per endpoint to the groups you want to grant access to the backend
services. This approach increases management overhead as
administrators have to dedicatedly manage users and maintain group
memberships in the gateway to grant or revoke permissions. With
Kong Gateway, management of keys, tokens and users happen in the
IdP versus the gateway removing the need to manage a separate silo
of identity.

This guide will walk through how the Kong Gateway can secure and
protect access to applications and APIs in a unified way.

https://konghq.com/kong/
https://konghq.com/kong/

6

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Kong Authentication and Authorization
Capabilities

Kong Gateway is a lightweight API Gateway that lets you secure,
manage, and extend APIs and microservices across hybrid or
multi-cloud infrastructure. Kong Gateway is available as an on-
premise or private cloud and with Konnect, our SaaS platform. The
power and flexibility of the Kong API gateway comes through its
plugins that integrate seamlessly with your deployments. There are
multiple Kong plugins available to handle authentication, request
transformations, rate limiting and more. Check out Kong’s Plugins
Hub for more information.

In this document, we will be focusing on Kong’s authentication
plugin - OpenID Connect (OIDC). Kong supports integration with
federated identity management through the OIDC plugin. The OIDC
plugin supports several types of grants/credentials such as opaque
access tokens, refresh tokens, authorization code, session cookies,
client credentials and more. It also supports several OIDC identity
management providers such as Okta, Keycloak, PingFederate, Azure
Active Directory, Microsoft Active Directory and more.

Secure Applications and APIs with
Kong Gateway and an IdP

The Kong Gateway authenticates the applications and users using
the IdP and maintains the session. The best practice is that access
tokens and refresh tokens are never exposed to browsers but only
the session cookies that Kong Gateway generates. Sometimes
mobile applications cannot handle the session cookies and
make use of refresh tokens directly. These refresh tokens (with
offline access scope) could be short or long-lived based on the
organization's security requirement. The session validity time is
configurable both in the IdP and Kong Gateway.

Authentication takes place in two distinct phases:

1.	 Login Workflow: Used by the applications to authenticate the
end-users.

2.	 API Access flow: Second phase of the flow, where applications
consume the API to retrieve/update relevant information.

https://konghq.com/kong/
https://konghq.com/kong-konnect/
https://docs.konghq.com/hub/#authentication
https://docs.konghq.com/hub/kong-inc/request-transformer/
https://docs.konghq.com/hub/kong-inc/request-transformer/
https://konghq.com/blog/kong-gateway-rate-limiting/
https://docs.konghq.com/hub/
https://docs.konghq.com/hub/
https://docs.konghq.com/hub/kong-inc/openid-connect/

7

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Login Workflow

In this workflow, the application delegates user authentication to
Kong Gateway. The below diagram describes the login workflow.

Diagram 1: Login Workflow

Login Workflow

1.	 The user goes to the application’s login page, which is a proxy
endpoint hosted in the Kong Gateway.

2.	 The Kong Gateway redirects to the Keycloak IdP.
3.	 IdP redirects the user to its own login page, where user submit

their credentials.
4.	 The IdP validates the user credentials and sends an

authorization code which is used by Kong Gateway to get the
access tokens. The gateway uses an “offline access” scope to
get refresh token along with access tokens.

5.	 Kong Gateway creates a session cookie and stores it in the
Redis cache.

6.	 Kong Gateway responds to applications with the session cookie
or refresh token based on the configuration. The application
will then use the session cookie or refresh token to access the
APIs as described in the API access flow below.

8

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

API Access flow

In this workflow, the application delegates user authentication to
Kong Gateway. The below diagram describes the login workflow.

API Access Workflow

Diagram 2: API Access Workflow

1.	 The application invokes the API endpoint hosted in the Kong
Gateway, passing the session cookie or refresh token in the header.
If a session cookie or refresh token is not sent in the header, the
gateway redirects the user for authentication as described in the
login flow above.

2.	 Kong Gateway validates if a session cookie exists in the Redis cache.
3.	 Kong Gateway retrieves the refresh token from the cache or from

the header and requests an access token from IdP using the
refresh token.

4.	 The IdP exchanges the refresh token for an access token. Kong
Gateway extracts the claim from the access token and validates
(using consumer, roles or groups mapping) if the application has
access to the upstream API.

5.	 Kong Gateway invokes the upstream API passing the token in
the header.

6.	 Upstream API re-validates the access token with the IdP. This step
is not required in all cases as the token has already been validated
by the Kong Gateway, but some upstream applications require
additional validation.

7.	 Upstream API sends the response back to the Kong Gateway.
8.	 The Kong Gateway sends the response back to the application.

9

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Keycloak Implementation Details

•	 The application users and associated groups are onboarded to
Keycloak. This group information is sent as part of the access
token claims.

•	 OAuth defines two types of clients, confidential clients and
public clients. Confidential clients are applications that are
able to securely authenticate with the authorization server, for
example being able to keep their registered client secret safe.
Public clients are unable to use registered client secrets, such
as applications running in a browser or on a mobile device. In
our case, Kong will be acting as the frontend integrating with
the IdP, so both mobile and web applications can be created
as “confidential” clients. But if these were already existing,
they would have been created as “public” clients for mobile
applications and “confidential” clients for web applications.

•	 Make sure appropriate users are added to these
applications’ access.

Kong Implementation Details

To support web, mobile and API authentication, we will create four
Kong proxy endpoints (routes and services) and the OIDC plugins
applied at each route level. The web browser automatically manages
the session cookie, but the application must manage the refresh token.

Following are the required parameters for the OIDC plugin to support
our requirement:

1.	 Authentication methods (grants and credentials): The
plugin supports several authentication methods, but for this
requirement, we would be using “session”, “authorization_code”
and “refresh_token.”

2.	 Scope: Scope of the access, for example, openid, offline_
access, profile etc.

3.	 OIDC issuer: The discovery endpoint of the IdP, for example:
https://keycloak.iam.svc.cluster.local/auth/realms/master

4.	 Application client id/client secret: Client application’s id and
secret. For public access clients, there is no secret.

5.	 Consumer claim: Claim attribute from which application is mapped.
6.	 Session cookie lifetime: The session cookie lifetime in seconds.

10

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

7.	 Session storage: Session cookie storage medium - in memory,
database or redis.

8.	 Session secret: Session cookie encryption key, so session
cookie is not stored in plain text.

9.	 Login action: Action to be performed after successful login (or
validation) - options are:

a.	 Redirect: forward the request to some endpoint
b.	 Response: send the response back to the client or
c.	 Upstream: forward to upstream service configured.

10.	 Client authentication: Indicator on if authentication is required
when Kong connects to IdP for token introspection or for
getting access tokens.

11.	 Upstream headers: Headers to be passed to upstream services.
12.	 Unauthorized redirect: If authentication fails or the session has

expired, this parameter provides the URL/endpoint where the
user can re-login.

13.	 Downstream headers: Headers to be passed to the client or
consumer applications.

14.	 Configure Redis cache for session storage management,
supporting cluster and externalizing the session storage

Please refer to the OIDC documentation for information on
additional parameters.

For your convenience, attached below is an example declarative YAML
configuration which you can modify for your environment. Replace the
issuer, client id, client secret, login and unauthorized URI(s), and Redis
cache configuration to your specific instance values.

_format_version: "1.1"
_workspace: DemoAppSecurity
services:
- connect_timeout: 60000
 host: mockbin.org
 name: DemoAPI
 port: 443
 protocol: https
 read_timeout: 60000
 retries: 5
 write_timeout: 60000
 routes:
 - name: MobileAPI
 paths:
 - /m/api/*
 path_handling: v0

https://docs.konghq.com/hub/kong-inc/openid-connect/
https://github.com/ksubburayalu/kong-oidc/blob/main/kong.yaml
https://github.com/ksubburayalu/kong-oidc/blob/main/kong.yaml

11

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - refresh_token
 client_auth:
 - none
 client_id:
 - ChangeClientId
 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 refresh_token_param_name: refresh_token
 session_cookie_lifetime: 36000
 session_cookie_renew: 6000
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://mobile.app.com/unauthorized
 upstream_access_token_header:
authorization:bearer
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https
 - name: WebAPI
 paths:
 - /web/api/*
 path_handling: v0
 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - session
 client_id:
 - ChangeClientID
 client_secret:
 - ChangeClientSecret

12

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 scopes:
 - openid
 session_cookie_lifetime: 3600
 session_cookie_renew: 600
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://example.web.com/unauthorized
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https
routes:
- name: MobileLogin
 paths:
 - /mlogin
 path_handling: v0
 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - session
 - authorization_code
 client_auth:
 - none
 client_id:
 - ChangeClientId
 client_secret: null
 consumer_by:
 - username
 - custom_id
 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 login_action: redirect
 login_methods:
 - authorization_code
 login_redirect_mode: query
 login_redirect_uri:
 - https://mobile.app.com/somepage
 login_tokens:
 - id_token
 - refresh_token

13

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 logout_methods:
 - POST
 - DELETE
 scopes:
 - openid
 - offline_access
 scopes_claim:
 - scope
 session_cookie_lifetime: 36000
 session_cookie_renew: 6000
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://mobile.app.com/unauthorized
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https
- name: WebLogin
 paths:
 - /wlogin
 path_handling: v0
 preserve_host: false
 protocols:
 - https
 regex_priority: 0
 strip_path: true
 https_redirect_status_code: 426
 request_buffering: true
 response_buffering: true
 plugins:
 - name: openid-connect
 config:
 auth_methods:
 - authorization_code
 - session
 client_id:
 - ChangeClientId
 client_secret:
 - ChangeClientSecret
 consumer_optional: true
 issuer: https://keycloak.iam.svc.cluster.local/
auth/realms/master
 login_action: redirect
 login_methods:
 - authorization_code
 login_redirect_mode: fragment
 login_redirect_uri:
 - https://example.web.com/landingpage
 scopes:
 - openid
 scopes_claim:
 - scope
 session_cookie_lifetime: 3600

14

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

 session_cookie_renew: 600
 session_redis_host: 172.18.0.5
 session_redis_port: 6379
 session_redis_prefix: sessions
 session_secret: changesecretvalue
 session_storage: redis
 unauthorized_error_message: Unauthorized
 unauthorized_redirect_uri:
 - https://example.web.com/unauthorized
 enabled: true
 protocols:
 - grpc
 - grpcs
 - http
 - https

Following are the sequence of events that occur when accessing
APIs from either web or mobile application

Diagram 3: Sequence of events that occur when accessing APIs from an application

15

Secure Your Web, Mobile Applications and APIs using the Kong Gateway

Conclusion

In this document, we saw how the Kong Gateway can be used to
protect web/mobile applications and APIs through a federated IdP.
With Kong, you can leverage the IdP for both authentication and
authorization without having to manage users or groups in Kong,
giving you the ability to leverage a single centralized IdP to control
access to upstream APIs. This helps in eliminating the additional
overhead of writing redundant code to integrate the IdP with each
application while ensuring consistent security best practices and
standards are followed across the organization.

To learn more about the OIDC plugin configuration parameters,
refer to the OpenID Connect documentation. For step-by-step OIDC
installation refer to our “How to Secure APIs and Services Using
OpenID Connect” blog post.

https://docs.konghq.com/hub/kong-inc/openid-connect/
https://konghq.com/blog/how-to-secure-apis-and-services-using-openid-connect/
https://konghq.com/blog/how-to-secure-apis-and-services-using-openid-connect/

Konghq.com

Kong Inc.
contact@konghq.com

150 Spear Street, Suite 1600
San Francisco, CA 94105
USA

	API Strategy: Risk and Rewards
	Authentication and Authorization using an API Gateway
	Kong Authentication and Authorization Capabilities
	Secure Applications and APIs with Kong Gateway and an IdP
	Login Workflow
	API Access flow
	Keycloak Implementation Details

	Kong Implementation Details
	Conclusion

	Button 2:
	Button 3:
	Button 4:
	Button 5:
	Button 7:
	Button 8:
	Button 9:
	Button 6:
	Button 10:
	Button 16:

